Зануление и заземление: в чем разница и что надежней

Что такое зануление электрических приборов

Из нормативной документации ГОСТа № 12.01.009-76 следует, что зануление – это преднамеренное электрическое соединение с нулевым защитным проводником нетоковедущих частей электрооборудования, которые могут оказаться под напряжением в результате неисправностей.

Есть понятие – глухозаземленная нейтраль. На трансформаторные подстанции по ЛЭП приходит 3 фазы. Глухозаземленная нейтраль – это собственное заземление, которое установлено вокруг. Он идет от подстанции на жилые дома и здания с фазными проводами.

Зануление реализуется следующим образом: в распределительном щитке делают разводку, которая идет с глухозаземленной нейтрали и разбивается перед автоматом на ноль, который идет в квартиру. По существу это так и останется глухозаземленная нейтраль, которая используется для зануления.

Если процесс зануления благополучно завершен, при касании корпуса включенного устройства с токоведущей оголенной жилой произойдет замыкание и сразу сработает автомат на вводе в квартиру.

Типы систем заземления

Вы замечали, что нулевой провод в трёхфазном кабеле имеет меньшее сечение, чем остальные? Это вполне объяснимо, ведь на него ложится не вся нагрузка, а только разница токов между фазами. Хотя бы один контур заземления в сети должен быть, и обычно он находится рядом с источником тока: трансформатор на подстанции. Здесь система требует обязательного зануления, но при этом нулевой проводник перестаёт быть защитным: что бывает, если в ТП «отгорел ноль», знакомо многим. По этой причине заземляющих контуров по всей протяжённости ЛЭП может быть несколько, и обычно так оно и есть.

Конечно, повторное зануление, в отличие от заземления, вовсе не обязательно, но зачастую крайне полезно. По тому, в каком месте выполняется общее и повторные зануления трехфазной сети, различают несколько типов систем.

Разница между заземлением и занулением

В системах под названием I-T или T-T защитный проводник всегда берётся независимо от источника. Для этого у потребителя устраивается собственный контур. Даже если источник имеет свою точку заземления, к которой подключен нулевой проводник, защитной функции последний не имеет. Он с защитным контуром потребителя никак не контактирует.

Системы без заземления на стороне потребителя более распространены. В них защитный проводник передаётся от источника потребителю, в том числе и посредством нулевого провода. Обозначаются такие схемы приставкой TN и одним из трёх постфиксов:

  1. TN-C: защитный и нулевой проводник совмещены, все заземляющие контакты на розетках подключаются к нулевому проводу.
  2. TN-S: защитный и нулевой проводник нигде не контактируют, но могут подключаться к одному и тому же контуру.
  3. TN-C-S: защитный проводник следует от самого источника тока, но там всё равно соединяется с нулевым проводом.

Ключевые моменты электромонтажа

Итак, чем вся эта информация может быть полезна на практике? Схемы с собственным заземлением потребителя, естественно, предпочтительны, но иногда их технически невозможно реализовать. Например, в квартирах высоток или на скальном грунте. Вы должны знать, что при совмещении нулевого и защитного проводника в одном проводе (называемом PEN) безопасность людей не ставится в приоритет. А потому оборудование, с которым контактируют люди, должно иметь дифференциальную защиту.

И здесь начинающие монтажники допускают целый ворох ошибок. Неправильно определяя тип системы заземления/зануления и, соответственно, неверно подключают УЗО. В системах с совмещённым проводником УЗО может устанавливаться в любой точке, но обязательно после места совмещения. Эта ошибка часто возникает в работе с системами TN-C и TN-C-S. А особенно часто, если в таких системах нулевой и защитный проводники не имеют соответствующей маркировки.

Разница между заземлением и занулением

Поэтому никогда не используйте жёлто-зелёные провода там, где в этом нет необходимости. Всегда заземляйте металлические шкафы и корпуса оборудования, но только не совмещённым PEN-проводником. На нём при обрыве нуля возникает опасный потенциал. Это необходимо делать защитным проводом PE, который подключается к собственному контуру.

Кстати, при наличии собственного контура на него выполнять незащищённое зануление очень и очень не рекомендуется. Если только это не контур вашей собственной подстанции или генератора. Дело в том, что при обрыве нуля вся разница асинхронной нагрузки в общегородской сети проследует в землю через ваш контур, раскаляя соединяющий провод.

Защитное заземление. Чем опасно самостоятельное выполнение заземления?

Принцип работы заземления для зданий по системе ТN-C, TN-S и TN-C-S.

Заземление дома. Монтаж контура заземления!

Контур заземления. Заземление и зануление на объектах.

Будем рады, если подпишетесь на наш Блог!

Трансформаторы разделительные — ГОСТ 30030-93 — Заземление

Содержание материала

23 Заземление

23.1 Доступные металлические части трансформаторов класса I, которые могут оказаться под напряжением в случае повреждения изоляции, должны быть постоянно и надежно подсоединены к зажиму защитного заземления, расположенному внутри трансформатора. Трансформаторы класса II не должны содержать никаких устройств для заземления. Соответствие проверяют осмотром. Примечание – Если доступные металлические части отделены от токоведущих частей металлическими частями, которые подсоединены к зажиму защитного заземления или заземляющему выводу, или если они отделены от токоведущих частей двойной или усиленной изоляцией, то они не рассматриваются как попадающие под напряжение в случае повреждения изоляции.

23.2 Зажимы защитного заземления для подсоединения к стационарной проводке и зажимы защитного заземления трансформаторов с креплениями типов Х и М должны соответствовать требованиям разд. 22. Их крепежные средства должны быть эффективно защищены от случайного ослабления, и их ослабление не должно быть возможным без применения инструмента. Соответствие проверяют осмотром, испытанием вручную и испытаниями по разделу 22. Примечание – Конструкции, используемые обычно для токоведущих зажимов, за исключением зажимов колонкового типа, обеспечивают достаточную упругость, чем удовлетворяется последнее требование; для других конструкций могут быть необходимы дополнительные меры, такие как использование достаточно упругих частей, которые не могут быть сняты случайно.

23.3 Все части зажима защитного заземления должны быть такими, чтобы при контакте этих частей с медным заземляющим проводом или другого металла с этими частями не возникала опасность коррозии. Корпус зажима защитного заземления должен быть изготовлен из латуни или другого металла, не менее устойчивого к коррозии, если только он не является частью металлической рамы или оболочки, когда винты или гайки должны быть изготовлены из латуни или из другого металла, не менее устойчивого к коррозии

Если корпус зажима защитного заземления является частью рамы или оболочки, изготовленных из алюминия или алюминиевого сплава, то должны быть приняты меры предосторожности во избежание коррозии, вследствие контакта между медью и алюминием или его сплавами. Соответствие проверяют осмотром

23.4 Штепсельные розетки во вторичной цепи не должны иметь заземляющих контактов. Соответствие проверяют осмотром. 23.5 Соединение между зажимом защитного заземления (или заземляющим выводом) и подключенными к нему частями должно иметь низкое сопротивление. Соответствие проверяют следующим испытанием. Ток, равный 1,5 номинального первичного тока или 25 А, в зависимости от того, что больше, получаемый от источника переменного тока с напряжением холостого хода не выше 12 В, пропускают поочередно через зажим защитного заземления или контакт заземления к каждой из доступных металлических частей. Примечание – Номинальный первичный ток определяют как частное от деления номинальной выходной мощности на номинальное первичное напряжение, а для многофазных трансформаторов – на номинальное первичное напряжение, умноженное на .

Падение напряжения измеряют между зажимом защитного заземления или контактом заземления приборного ввода и доступной металлической частью, и значение сопротивления вычисляют по току и этому значению падения напряжения. Сопротивление в любом случае не должно превышать 0,1 Ом

Примечания 1 Следует обратить внимание на то, чтобы сопротивление между контактом измерительного щупа и испытуемой металлической частью не оказывало влияния на результаты испытаний. 2 При измерении сопротивления сопротивление шнура или гибкого кабеля не учитывают

В чем разница между заземлением и занулением?

Заземление и зануление имеют идентичную функцию – защита человека и животного от воздействия электрического тока. Но между двумя понятиями есть существенные различия:

При заземлении ток отводится в почву. Напряжение в сети уменьшается, но не до нуля. Минимальный ток в системе все же остается. Зануление же позволяет экстренно отключить подачу питания на прибор.

Заземление не связано с фазами электроприборов. При организации зануления строго соблюдаются правила подключения.

Отличие зануления и заземления и в сфере их применения. Первое подходит для эксплуатации в глухозаземленных нейтралях. Заземление же применяется в цепях, имеющих изолированную нейтраль. Подобную систему монтируют для оборудования, напряжение которого превосходит 1000 В.

Зануление подходит для промышленности, а в жилых домах его устанавливают крайне редко. Заземление же лучший способ обезопасить жителей квартир.

Зазамеление и зануление одинаково хорошо защищают технику от повреждений. А вот с точки зрения безопасности для человека первый вариант считается более эффективным.

Дополнительным различием становится возможность самостоятельного монтажа. Соблюдая все технические требования и нормы безопасности, заземление можно выполнить своими руками. Для этого достаточно иметь сварочный аппарат, металлические прутки и достаточный уровень знаний. Зануление же сможет выполнить только высококвалифицированный электрик.

Заземление отличается от зануления и методикой подключения. Это наглядно видно по схемам.

Воздушные линии электропередач

На опорах линий электропередач (ВЛ) согласно действующим положениям ПУЭ повторное заземление PEN-проводника, прокладываемого от трансформаторной подстанции, делается обязательно. Объяснить это можно потребностью повышения электрической безопасности персонала, работающего на ВЛ, а также созданием условий для надежного срабатывания автоматов защиты.

Схема повторного заземления нулевого провода в системе электроснабжения

ПЗ обязательно обустраивается в следующих местах:

  • На опорах, расположенных в конце ВЛ.
  • На столбах, непосредственно перед вводом «воздушки» на объект.
  • Перед любым ответвлением от трассы, протяженность которого составляет более 200 метров.

Заземление опоры ВЛ Для монтажа заземляющего устройства обычно используется подземная часть ВВ опоры. В случае, когда ее недостает для получениятребуемых характеристик – делается дополнительный контур. Для оформления спуска с вершины столба применяется проволока без изоляции диаметром 6,0 или 8,0 мм. Помимо PEN-провода, обязательно заземляются все элементы конструкции опоры, изготовленные из металлов. Согласно требованиям ПУЭ сопротивление повторного контура не должно превышать 30-ти Ом.

На столбах с приборами уличного освещения обязательному заземлению подлежат не только провода СИП, но также корпуса светильников и другие детали самих опор, изготовленные на основе металла. Для этих целей в городской черте с ограниченными возможностями заглубления вместо типовых вертикальных штырей нередко используются горизонтальные полосы. После их монтажа полагается провести испытание обустроенной системы, проверив реальное сопротивление заземляющего устройства посредством специальных измерительных инструментов. Без повторного заземления самонесущих проводов и опор городского освещения, данный участок трассы приемной комиссией к эксплуатации не допускается.

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Заземление в квартире

Самый надёжный способ защиты от поражения электрическим током в быту – электроприборов. Ведь многие наши домашние помощники имеют металлические (читай – токопроводящие) корпуса, и в результате обрыва или повреждения изоляции может произойти касание фазного провода к корпусу прибора. И тогда касаться его становится смертельно опасно…

Чтобы избежать беды, корпус прибора соединяют с землёй. Теперь при попадании фазы на корпус происходит короткое замыкание и срабатывает защита, отключающая подачу тока.

В современных квартирах выполняется по трёхпроводной схеме:

Фаза; ноль; земля.

Заземление электроприборов происходит через третий контакт вилки и . Сложнее ситуация в домах, где смонтирована по двухпроводной схеме, и в розетках провод заземления отсутствует. В этом случае заземляющий провод придется проводить непосредственно от корпуса прибора.

Где взять «землю» в квартире многоэтажного дома? Ответ прост: в электрощите, установленном на каждом этаже.

Перед тем как выполнять (лучше, конечно, это делать при участии или под наблюдением профессионального электрика), внимательно изучите электрощит. Ведь если надёжное заземление у щита отсутствует, подключение к нему провода заземления квартиры не только напрасно, но и опасно!

Поясним на примере. У соседа короткое замыкание. Ток пройдёт следующий путь: фаза соседа – «ноль» соседа – этажный электрощит – Ваш провод заземления – корпус Вашего прибора!

Главные отличия

В первую очередь нужно отметить, что зануление и заземление имеют совершенно разное назначение и действие. Основная разница этих защитных мер – это их назначение. Заземление служит более эффективным и надежным способом защиты жилого дома от скачка напряжения, чем метод зануления. Различие в их назначении, позволяет выбрать из них тот способ предохранения, который больше подходит в конкретной ситуации. Можно сразу сделать в жилом доме оба варианта защиты. Однако следует отметить, что обычно предпочтение отдают именно заземлению, считая, что этот метод необходим в любом случае.

Заземление позволяет создать защиту сети, быстро снизить напряжение переменного тока в сети до нормального стабильного значения. Тогда как зануление будет способствовать более быстрому отключению цепи, которая была под напряжением, где фактически произошел сбой на линии. Также большой разницей является тот факт, что способы их монтажа имеют разную степень сложности.

Создание зануления в жилом доме, и подключение специального оборудования требует более глубоких познаний об электротехнике. Чтобы этот метод защиты сработал правильно, нужно сделать все правильно

Определить точку зануления очень важно, так как в противном случае могут быть негативные последствия. При монтаже защитных контуров заземления достаточно следовать четким указаниям или инструкциям. Их конструкция достаточно простая

Их конструкция достаточно простая.

Способ заземления не имеет зависимости от фазности электрических приборов и различных устройств, так как они имеют одинаковую схему установки. Также схемы создания заземления имеют большее разнообразие, в отличие от зануления, что позволяет подобрать более подходящий вариант в конкретной ситуации. Еще одно их различие заключается в том, что заземление направлено обеспечивает выравнивание потенциалов, а зануление реагирует на такое изменение обесточиванием сети.

Задачи заземления

Искусственно созданный контакт между электроустановкой и землей называется заземлением. Его задача — понизить напряжение на корпусе устройства до безопасного для живых существ уровня. При этом большая часть тока отводится в грунт. Чтобы заземлительная система работала эффективно, ее сопротивление должно быть значительно ниже, чем на остальных участках цепи. Такое требование основывается на свойстве электрического тока всегда выбирать наименьшее сопротивление на своем пути.

Тока замыкания иногда недостаточно при использовании заземлителя с относительно высоким для реакции защитных устройств сопротивлением. Поэтому еще одна задача заземлительной системы — рост аварийного тока замыкания.

Типы заземляющих устройств:

  1. Молниезащитные. Отводят импульсные токи, поступающие в систему в результате ударов молнии. Используются в молниеотводах и разрядниках.
  2. Рабочие. Предназначены для поддержания нормальной работоспособности электрических установок. Используются как в обычных, так и в аварийных ситуациях.
  3. Защитные. Защищают людей и животных от поражения током, проходящим по металлическим предметам в случае пробоя фазовых проводников.

Устройства заземления бывают естественными и искусственными:

  1. К естественным относят металлические изделия, основная функция которых не заключается в отводе тока в землю. К таким заземлителям относятся трубопроводы, железобетонные элементы зданий, обсадные магистрали и т.п.
  2. Искусственные заземлители — системы, созданные специально для отвода тока. Это стальные полосы, трубы, уголки и другие металлические элементы.

Для заземлительной системы нельзя использовать трубы, предназначенные для транспортировки горючих веществ (как газов, так и жидкостей), алюминиевые детали, кабельные оболочки. Также не подходят для этой цели предметы, покрытые антикоррозийным изоляционным слоем. Запрещено использовать как заземляющие проводники трубы водопровода и отопления.

Отличия заземления и зануления

Нередко пользователи задаются вопросом, а можно ли делать зануление вместо заземления, и как это отразится на безопасности потребителя. Отвечая на все подобные вопросы, следует исходить из определения, данного этому виду защиты в предыдущем разделе. Из него следует, что функционально зануление более эффективно, поскольку в короткий промежуток времени до срабатывания станционной автоматики оно выполняет ту же функцию, что и обычное ЗУ.

Заземление ПУЭ

Однако это не означает, что данный вид защиты должен применяться всегда и повсеместно. Дело в том, что у зануления имеется целый ряд недостатков, являющихся следствием особенностей его организации. Они проявляются в следующем:

Нулевой провод систем энергоснабжения имеет большую протяжённость и постоянно используется в активном режиме (как проводник, по которому протекает рабочий ток), вследствие чего со временем он может разрушиться;

Дополнительная информация. Указанное явление в технической литературе, а также в среде специалистов чаще всего упоминается как «отгорание нуля» (смотрите фото ниже).

Разрушение нуля

  • В отличие от заземления, при обустройстве которого нет зависимости от фазы защищаемой линии, при занулении должны соблюдаться определенные условия подсоединения защитного проводника;
  • По своим возможностям оно ограничено, поскольку может использоваться только в цепях с наглухо заземлённой нейтралью в сетях TN-C-S, TN-C, TN-S (при наличии N, PE, PEN проводников).

В линиях, где подключение организовано по схеме с изолированной нейтралью (в системах IT и ТТ), по своему назначению более подходящих для промышленных объектов, оно работать не сможет.

Также эти два вида преднамеренной защиты отличаются и по области своего применения, а именно:

  • Зануление обычно применяется в многоэтажных жилых домах, где практически невозможно организовать полноценное заземление;
  • Повторное заземление более часто используется на промышленных предприятиях, где согласно ТБ к безопасности персонала предъявляются повышенные требования;
  • Этот же тип защиты чаще всего применяется в быту (в загородных домах, в частности), где возможностей для обустройства защитного контура имеется предостаточно (смотрите фото ниже).

Защитное заземление в частном доме

Следует добавить, что защитное заземление и зануление отличаются ещё одним важным фактором. Дело в том, что в первом случае защита распространяется только на участок электрической цепи, на котором в аварийном режиме (при пробое изоляции) за счёт стекания тока в землю понизилось рабочее напряжение. При этом вся остальная часть снабжающей электричеством системы продолжает функционировать.

В отличие от действия заземляющего эффекта, при занулении данный участок линии электропитания отключается полностью.

Так что пытаться ответить на вопрос, в чём состоит их различие, будет не совсем корректно. Гораздо правильнее говорить о том, что заземление и зануление электроустановок должны использоваться совместно. Такое комбинированное их применение обеспечит более эффективную защиту от поражения током.

Подводя итог их сравнению, отметим, что принцип зануления состоит в превращении аварийной ситуации в однофазное замыкание, приводящее к срабатыванию станционной защитной автоматики. Заземление же, с одной стороны, представляет собой снижение потенциала опасной точки (уменьшение сопротивления заземлителя), а с другой – их выравнивание.

Оно в данном случае заключается в поднятии потенциала опоры со стоящим на ней человеком до уровня напряжения на заземлённом корпусе.

Заземление

Под понятие заземления попадают конструкции, соединяющие установки, которые используют электроэнергию, с землей. Благодаря этому при прикосновении к поверхности, находящейся под напряжением, полученный человеком заряд сводится к минимуму.

Используют данный способ только в электрооборудовании с изолированной нейтралью. Благодаря соединению земли с корпусом установки, при повреждении изоляции ток должен уходить по заземляющей части из-за меньшего сопротивления.

Заземление частного дома

Еще одна функция, выполняющаяся заземлением – это увеличение аварийного тока замыкания. Это необходимо, чтобы защитное электрическое устройство срабатывало во время попадания нетоковедущих частей под напряжение. Обусловлено это тем, что установке заземления, которое имеет достаточно высокий уровень сопротивления, может быть недостаточно тока замыкания. Такая ситуация опасна тем, что несмотря на аварийное состояние оборудования, защита не срабатывает и опасность поражения рабочего персонала остается высокой.

Заземляющее устройство по своему строению представляет собой один или целую группу проводников, которые соединяют токопроводящие элементы с землей. Существует несколько основных типов заземления:

  1. Рабочий тип. Основное предназначение – обеспечение бесперебойной работы электрооборудования как при штатном режиме функционирования, так и при аварийном.
  2. Защитный тип. Предназначен для обеспечения безопасности при работе с электроустановками. Главной причиной возникновения опасности в оборудовании является пробой токоведущего провода на рабочую поверхность или корпус.
  3. Грозозащитный тип. Главное предназначение – отвод разряда молнии, попавшего в разрядник или молниеотвод.

Кроме разделения на типы, заземляющие устройства отличаются в следующем:

  • Искусственно изготовленное заземление. Данный вид конструкций изготавливается специально для обеспечения защиты от напряжения. Состоят они из таких элементов, как провода и стержни из металла, трубы некондиционного типа, стальные уголковые приспособления.
  • Естественное заземление. К этой категории относятся конструкции, изготовленные из металла, но изначально не предназначенные для обеспечения защиты от напряжения. Обычно в качестве естественного заземления используют обсадные трубы, трубопровод, сооружения из железобетона.

Опознавательный знак заземления

Стоит отметить, что естественный вид заземления используют при соблюдении определенных правил. Основное из них – это запрет на эксплуатацию конструкций, которые предназначены для передачи горючих жидкостей или газов. Также для вышеупомянутой цели не подходят проводники, сделанные из алюминия или трубы, поверхность которых покрыта антикоррозийным слоем изоляции.

Особенности и принцип действия зануления

Назначение зануления — метод защитного устройства позволяет провести подключение корпусов оборудования и других деталей из металлов с нейтралью (нулевой защитный проводник). В условиях с заземленным защитным проводником и напряжением в сети не более 1000 В, используется схема зануления.

При пробое фазного тока на корпусе электроприборов и оборудовании происходит КЗ фазы. При этом, срабатывают автоматы защитного отключения тока и цепь размыкается. Этим и отличаются две защитные системы.

К приборам зануления относят:

  • плавкий предохранитель;
  • автомат отключения тока;
  • встроенные в пускатели, тепловые реле;
  • контактор с тепловой защитой.

Возникла ситуация пробоя фазного напряжения. При этом от корпуса электроустановки ток проходит по нейтрали на обмотку трансформатора. Затем, от него по фазе — на предохранитель. Плавкие предохранители сгорают от пиковых значений тока, в электрическую цепь прекращается подача напряжения.

При этом, ноль беспрепятственно проводит ток, позволяя сработать защите. Его прокладывают в безопасном месте, запрещается оснащать его дополнительными выключателями и другими устройствами.

Значение уровня проводимости провода фазы должно быть наполовину больше нулевого проводника. Как правило, в этом случае используют стальные пластины, оболочки кабеля и другие материалы.

Зануляющие проводники проверяют на исправность при сдаче работ по подключению и проводке электроэнергии в здании, а также, через определенное количество времени, при пользовании электрической схемой.

Не менее одного раза в период 5 — летнего срока, производятся замеры значений сопротивления всей цепи фазного и нулевого проводника на корпусах самого дальнего оборудования от щита электропроводки, а также самого мощного оборудования в помещении.

Защитное зануление, в некоторых случаях, может выполнять работу защитного отключения. При этом, отличаются эти 2-е защитных системы тем, что в случае защитного отключения цепи, его можно использовать в любых условиях, при различных режимах заземляющего проводника, показателей напряжения цепи. В таких сетях можно обойтись и без провода нулевого подключения.

Расчет зануления необходимо производить с учетом всех условий работы и принципа его действия.

Защитное отключение выполняют с использованием защитной системы, которая отключает электрооборудование автоматически. При возникновении аварийных ситуаций и угроз поражения и нанесения электротравм человеку, к таким ситуациям можно отнести:

  • короткое замыкание фазного провода на корпус;
  • повреждение изоляции электрической проводки;
  • неисправности на заземляющем контуре;
  • нарушения целостности зануляющих проводников.

Эта защитная система нередко используется при невозможности провести защитные системы заземления и зануления. Но на ответственных участках, возможна установка защитного отключения и как дополнительный контур защиты человека и оборудования от поражения токами утечки и короткого замыкания.

При этом, их подразделяют, в зависимости от величины тока на входе и изменений реакции защитных устройств, на несколько схем:

  • наличия напряжения на корпусе оборудования;
  • силу тока при замыкании на провод земли;
  • напряжения или силу тока в нулевом проводнике;
  • уровня напряжения на фазе относительно значения на проводе земли;
  • устройства для постоянного или переменного тока;
  • устройства комбинированные.

В заключение разберем вопрос, который может задать начинающий электрик.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий