От чего зависит и как определяется модуль упругости бетона: важные моменты

Новые редакции указателей нормативных документов по энергетике

Для работы с текстом документа (печать документа, поиск по тексту) необходимо авторизоваться.

Сервис содержит 19095 бесплатных документов

, которые доступны зарегистрированным пользователям. Регистрируйся бесплатно >>>

  • Информация о документе
  • Ссылки на документы
  • Ссылки из других документов
Наименование документаГОСТ 24452-80. Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона
Дата начала действия01.01.1982
Дата принятия18.11.1980
Дата отмены действия01.09.2010
СтатусНедействующий
Новый документДСТУ Б В.2.7-217:2009
Вид документаГОСТ (Межгосударственный стандарт)
Шифр документа24452-80
РазработчикГосстрой СССР
Принявший органГосстрой СССР

В данном документе нет ссылок на другие нормативные документы.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения призменной прочности,

модуля упругости и коэффициента Пуассона

Concretes. Methods of prismatic, compressive strength,

modulus of elasticity and Poisson’s ratio determination

Дата введения 1982-01-01

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 18 ноября 1980 г. № 177.

ПЕРЕИЗДАНИЕ. Июль 1989 г.

Стандарт устанавливает методы определения призменной прочности, модуля упругости и коэффициента Пуассона бетона.

Стандарт соответствует рекомендации СЭВ РС 279-65 и РИЛЕМ Р8 в части требований к образцам.

Размеры образцов в зависимости от наибольшей крупности заполнителя должны удовлетворять требованиям ГОСТ 10180-78

Модуль Юнга для стали

Под термином модуля Юнга или продольной упругости конструкционного материала принято понимать физическую величину, которая показывает определенное свойство материалов. Свойство это обеспечивает их сопротивление, действующим деформациям в продольном направлении. Иными словами, этот показатель говорит о степени жесткости какого-либо конкретного материала.

Свое название данный модуль получил, благодаря Томасу Юнгу, который и работал над выявлением данного феномена. Такая физическая величина выражается в Паскалях и обозначается буквой латинского алфавита – Е.

Область применения

Основной сферой применения данного показателя является испытание всевозможных материалов.

Благодаря этой величине можно судить о степени деформации материала во время его растяжения, сжатия и изгиба

В строительстве крайне важно знать модуль Юнга всех материалов, использующихся в работе

Именно от него, в большей степени, зависит уровень прочности, долговечности и надежности возведенных зданий.

Существует специальная таблица, согласно которой, можно найти показатель модуля Юнга того или иного материала. Так, модуль Юнга для стали равняется 200 Е, (ГПА), что может считаться достаточно высокой цифрой. а наименьшим показателем обладает дерево – всего 10 Е, (ГПА).

Формула модуля Юнга

Если модуль Юнга нужно показать графически, то следует изобразить специальную диаграмму напряжения. На ней будут изображены кривые, которые получались при многократном испытании на прочность одного и того же вещества.

Тогда модуль Юнга можно выразить отношением нормального напряжения к показателю деформации на каком-то участке диаграммы.

Таким образом, математическое выражение можно записать следующим способом E=σ/ε=tgα.

Тогда, модуль продольной упругости и показатели поперечных сечений оказываются в непосредственной связи. Зависимость эта может выражаться, как ЕА и Е1.

ЕА является показателем жесткости при сжатии и растяжении материала на его поперечном сечении. Площадь сечения в этом выражении обозначается буквой «А».

Е1 означает показатель жесткости во время изгиба поперечного сечения материала. В этой формуле «1» означает осевой момент инерции, появляющийся в сечении изгибаемого материала.

Самые высокие показатели модуля Юнга имеют:

• Хром – 300 Е, (ГПА)

• Никель – 210 Е, (ГПА)

• Сталь – 200 Е, (ГПА)

• Чугун – 120 Е, (ГПА)

• Хром – 110 Е, (ГПА)

• Кремний – 110 Е, (ГПА).

Среди материалов с самым низким значением модуля Юнга можно отметить:

• Олово – 35 Е, (ГПА)

• Бетон – 20 Е, (ГПА)

• Свинец – 18 Е, (ГПА)

• Древесина – 10 Е, (ГПА).

3 вида деформации бетона и причины возможных изменений

Изменение формы и размера стройматериала под внешними воздействиями называется относительная деформация бетона. Она бывает объемной и силовой. Под влиянием усадки или сокращения бетонного камня из-за влияния на него химико-физических процессов, которые получаются в результате взаимодействия цементного камня, влаги и температурного режима развивается объемная во всех направлениях деформация изделия. Силовое изменение происходит только вдоль действия усилий.

  1. Что такое деформация бетона?
  2. Виды бетонной деформации
  3. Особенности и причины
  4. Расчет деформации
  5. Деформационные характеристики

ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Призменную прочность Rпрвычисляют для каждого образца по формуле

()

где Рр — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);

F — среднее значение площади поперечного сечения образца, определяемое по его линейным размерам по ГОСТ 10180-78.

5.2. Модуль упругости Еsвычисляют для каждого образца при уровне нагрузки, составляющей 30 % от разрушающей, по формуле

()

где s1 = P1F— приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30 % от разрушающей;

P1— соответствующее приращение внешней нагрузки;

ε — приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .

В пределах ступени нагружения деформации определяют по линейной интерполяции.

5.3. Коэффициент Пуассона бетона µ вычисляют для каждого образца при уровне нагрузки, составляющей 30 % разрушающей, по формуле

()

где ε — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .

5.4 Значения ε и ε определяют по формулам:

ε = ε1 — ∑ε1п; ()

ε = ε2 — ∑ε2п, ()

где ε1 и ε2 — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки Р1= 0,3Рр и измеренные в конце ступени ее приложения;

∑ε1п и ∑ε2п — приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки Р1 = 0,3Рр.

Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем — четырем образующим цилиндра.

5.5. Значения относительных деформаций ε1 и ε2 определяют по формулам:

ε1 = Dl1l1; ()

ε2 = Dl2l2, ()

где Dl1, Dl2 — абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;

l1, l2 — фиксированные базы измерения продольной и поперечной деформации образца.

При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины ε1и ε2 определяют непосредственно по шкалам измерительных приборов.

5.6 При определении средних значений призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.

Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения yiпризменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии , определенными по формуле (), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах () и () указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости и коэффициента Пуассона в серии образцов определяют по формуле

()

где — среднее значение указанных величин в серии образцов данного размера;

yiзначение указанных величин по отдельным образцам;

п — число образцов в серии.

5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.

В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:

а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;

б) модуль упругости бетона отдельных образцов, МПа;

в) средний модуль упругости бетона в серии образцов, МПа;

г) значение коэффициента Пуассона отдельных образцов;

д) среднее значение коэффициента Пуассона в серии образцов;

е) база измерения деформаций, мм;

ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);

з) температура нагрева;

и) температура и относительная влажность воздуха помещения, в котором производились испытания.

В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т.д. в соответствии с требованиями ГОСТ 10180-78.

5.8. Применяемые в стандарте основные термины, обозначения и пояснения приведены в приложении .

Как получить расчетное сопротивление

Для обеспечения достаточной надежности бетонных конструкций, при выполнении расчетов, используют такие значения прочности бетонного материала, которые в большинстве случаев ниже фактических показателей в конструкциях. Эти значения называют расчетными, соответственно, они напрямую зависят от фактических или по-другому – нормативных значений.

Нормативные характеристики

Еще совсем недавно (до 1984 г) единственной характеристикой прочности бетона была его марка (М). Этот параметр обозначает среднюю временную устойчивость материала на сжатие. Но, с появлением СНиП 2.03.01 были также введены классы по прочности на сжатие.

По сути, класс является нормативным сопротивление осевому сжатию эталонных кубов размером 15х15х15 см с обеспеченностью 0,95 или гарантированной доверительной вероятностью 95%, и риском 5 процентов. Надо сказать, что в данном случае брать среднюю крепость рискованно, так как имеется 50 процентов вероятности того, что в опасном сечении конструкции она окажется ниже средней.

В то же время брать за основу минимальный показатель слишком накладно, так как это приведет к существенному неоправданному увеличению сечения конструкции.

На фото — бетонная конструкция

Таким образом, основным параметром прочности в нашем случае является класс

Но, помимо осевого сжатия, важной характеристикой является еще и осевое растяжение. Устойчивость к осевому растяжению (если этот параметр не контролируется) определяют в зависимости от класса B:

КлассB10B7,5B5B3,5
Устойчивость к осевому растяжению (МПа)0,850,700,550,39

Расчетные характеристики

Как уже было сказано выше, для обеспечения надежности конструкций, выполняют расчет с определенным запасом прочности. Чтобы получить этот запас, удельное сопротивление бетона делят на определенный коэффициент, и таким образом данный показатель при расчетах уменьшают.

Определение фактического коэффициента прочности

Расчетное сопротивления бетона растяжению или сжатию можно вычислить по следующей формуле — R= Rn /g, где g – является коэффициентом надежности по прочности. Обычно данное значение составляет 1,3. Однако, чем менее однородный массив, тем этот коэффициент больше.

Правда, выполнять расчет не обязательно, так как получить нужные значения позволяет таблица расчетного сопротивления бетона сжатию и растяжению:

B20B15B12,5B10B7,5B5B3,5
Устойчивость к осевому сжатию (МПа)11,58,57,564,52,82,1
Устойчивость к осевому растяжению (МПа)0,900,750,660,570,480,370,26

Алмазная резка бетонной поверхности

Определение электрического сопротивления опытного образца

Состав и пропорции, используемые при производстве

Важную роль в создании необходимых технических характеристик, свойств смеси играют используемые компоненты и их качество.

В состав бетона класса В20 входят следующие компоненты:

Бетон В20 М250 — пропорции

  • цемент;
  • песок;
  • крупный заполнитель;
  • вода;
  • химическая добавка.

Основой смеси является цемент. От его количества и качества зависит качество получаемого цементного камня.

Песок лучше использовать промытый из карьера, с модулем крупности от 2 до 2.5. Обычно используют мелкий и средний речной песок.

В качестве крупного заполнителя используют гравийный, известковый щебень или просто гравий. Для обеспечения водонепроницаемости, морозостойкости необходим плотный щебень из горных пород или гравий.

Для замешивания нужно заливать все только чистой водой.

В состав бетонной смеси могут включаться модифицирующие добавки для повышения эксплуатационных свойств изделий. Их количество должно быть не выше 5% от общего объема смеси. Пластификаторы создают эффект разжижения, упрощая формовку изделий, сокращая расход воды и цемента. Они увеличивают плотность бетона.

Применение химических добавок для бетонного раствора

Видео по теме: Заливка ленточного фундамента — бетон М250, В20

Публикации по теме

Определение пропорций бетона в ведрах для бетономешалки

Особенности марки бетона В25

Характеристики и правила приготовления бетона В15

От чего зависит модуль упругости бетона?

Упругие свойства бетона зависят от факторов:

  • качества и объемного содержания заполнителей;
  • класса материала;
  • температуры воздуха и интенсивности радиоактивного излучения;
  • влажности среды;
  • времени воздействия нагрузки;
  • условий твердения смеси;
  • возраста бетона;
  • армирования.

Заполнители

Бетон представляет собой конгломерат из двух составляющих — цементного камня и заполнителей. В неоднородной структуре возникает сложное напряженное состояние. Более жесткие частицы воспринимают основную часть нагрузки, а вокруг пор и пустот образуются участки с поперечными растягивающими усилиями.

Крупный заполнитель, обладая высоким модулем Юнга, увеличивает упругие свойства бетона. Мелкие пылеватые частицы, поры и пустоты снижают их.

Класс бетона

Чем выше класс материала, т.е. больше его прочность на сжатие и плотность, тем лучше он сопротивляется деформирующим нагрузкам. Наиболее высоким модулем упругости обладает бетон В60 — 39,5 МПа*10 -3 , минимальный показатель у композита класса В10- 19 МПа*10 -3 .

Температура и радиация

Повышение температуры окружающей среды, интенсивности солнечной радиации приводят к уменьшению упругих свойств и росту деформаций. Связано это с увеличением внутренней энергии бетона, изменению траекторий движения молекул в твердом теле, линейному расширению материала, и, как следствию, усилению пластичности.

Разницу не учитывают при колебаниях в пределах 20°С. Большие температурные изменения существенно влияют на деформацию бетонных конструкций. В таблице СП 63.13330.2012 указаны величины модулей упругости в зависимости от температуры.

Влажность

Колебания влажности воздуха приводят к изменению упругих свойств материала. В расчетах применяют коэффициент ползучести φ. Чем больше содержание водяных паров в окружающей среде, тем ниже показатель и соответственно меньше пластические деформации конструкции.

Время приложения нагрузки

Модуль упругости зависит от времени действия нагрузки. При мгновенном нагружении конструкции деформации пропорциональны величине внешних сил. При длительных напряжениях величина E уменьшается, изменения развиваются по нелинейной зависимости и суммируются из упругих и пластичных деформаций.

Условия набора прочности

При проведении испытаний замечено, что у бетона естественного твердения модуль упругости выше, чем при обработке материала пропариванием при атмосферном давлении или в автоклавных установках.

Это объясняется тем, что изменение условий набора прочности приводит к образованию большего количества пор и пустот из-за неравномерного температурного расширения объема, ухудшения качества гидратации цементных зерен. Такой бетон обладает более низкими упругими свойствами по сравнению с затвердевшим в нормальных условиях.

Возраст бетона

Свежеуложенный бетон набирает прочность в течение 28 суток. Но даже по истечении этого времени материал при нагрузке обладает одновременно упругими и пластическими свойствами. Наибольшей твердости он достигает примерно через 200-250 суток. Показатель E в этом возрасте максимальный, соответствующий марочной прочности.

Армирование конструкций

Для восприятия растягивающих и сжимающих усилий в железобетон помещают каркасы или сетки из арматуры классов АI, AIII, А500С, Ат800, а также из композитов или древесины.

Применение армирования увеличивает упругость, прочность конструкции на сжатие и на растяжение при изгибе, препятствует образованию усадочных и деформационных трещин.

Факторы, влияющие на модуль Юнга

Модуль Юнга – это основная характеристика бетона, определяющая его прочность. Благодаря величине проектировщики проводят расчёты устойчивости материала к различным видам нагрузок. На показатель влияют многие факторы:

  • качество и количество заполнителей;
  • класс бетона;
  • влажность и температура воздуха;
  • время воздействия нагрузочных факторов;
  • армирование.

ФОТО: dostroy.comМодуль упругости позволяет проектировщикам правильно рассчитывать нагрузку

Качество и количество заполнителей

Качество бетона зависит от его заполнителей. Если компоненты имеют низкую плотность, соответственно, модуль Юнга будет небольшим. Упругость материала возрастает в несколько раз, если применяются тяжёлые наполнители.

ФОТО: russkaya-banja.ruКрупные компоненты увеличивают характеристики упругости

ФОТО: ivdon.ruГрафик зависимости предела прочности материала от цементного камня

Класс материала

На коэффициент влияет и класс бетона: чем он ниже, тем меньше значение модуля упругости. Например:

  • модуль упругости у В10 соответствует значению 19;
  • В15 – 24;
  • В-20 – 27.5;
  • В25 – 30;
  • показатель у В30 возрастает до значения 32,5.

ФОТО: buildingclub.ruЗависимость от класса бетона

Как влияют на показатель влажность и температурные значения

На рост деформаций и уменьшение упругих свойств материала влияют:

  • повышение температуры воздуха;
  • увеличение солнечной активности.

Под воздействием негативных факторов окружающей среды внутренняя энергия материала увеличивается, это приводит к линейному расширению бетона и соответственно, к увеличению пластичности.

На ползучесть материала оказывает влажность, приводящая к изменению упругих характеристик. Чем выше содержание водяных паров, тем ниже коэффициент.

ФОТО: betonpro100.ruВлияние влажности на ползучесть бетона

Время воздействия нагрузки и условия твердения смеси

На показатель упругости влияет время воздействия нагрузки:

  • при мгновенном усилии на бетонную конструкцию деформативность прямо пропорциональна величине внешней нагрузке;
  • при длительном воздействии значения коэффициента уменьшаются.

Во время проведения исследований было отмечено, если бетон твердеет естественным способом, модуль упругости у него выше в отличие от пропаривания материала в различных условиях. Это объясняется тем, что при использовании внешних условий в бетоне образуются пустоты и поры в большом количестве, ухудшающие его упругие свойства.

ФОТО: udarnik.spb.ruЗависимость модулей упругости от разных факторов

Возраст бетона и армирование конструкции

Прочность бетона находится в прямой зависимости от его возраста, со временем показатель только увеличивается. Ещё один фактор, положительно влияющий на модуль упругости бетона, – армирование, которое препятствует деформации материала.

ФОТО: 63-ds.netsamara.ruДля конструкций, которые будут эксплуатироваться под большими нагрузками, необходима укладка металлической решётки

8.5.3. Модуль упругости и деформации бетона при

КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ

Деформации бетона при приложении нагрузки зависят от его состава, свойств составляющих материалов и вида напряженного состояния. Диаграмма сжатия бетона имеет криволинейное очертание, причем кривизна увеличивается с ростом напряжений (рис. 6.4).

С увеличением прочности бетона уменьшается его деформация и кривизна диаграммы . Низкопрочные бетоны имеют даже нисходящую ветвь диаграммы сжатия. Однако на этом участке сплошность материала уже нарушена, в нем возникают микроскопические трещины, отслоение отдельных частей. В железобетонных конструкциях арматура связывает отдельные части бетона в единое целое и для частных случаев расчета конструкций необходимо учитывать нисходящую ветвь диаграммы сжатия бетона.

На характер нарастания деформаций под действием нагрузки влияют также скорость ее приложения, размеры образца, температурно-влажностное состояние бетона и окружающей среды и другие факторы. Деформация бетона включает упругую, пластическуюи псевдопластическуючасти (рис. 6.4):

Соотношение между ними зависит от состава бетона, использованных материалов и других факторов. Величина пластической и псевдопластической частей возрастает с увеличением длительности нагрузки, понижением прочности бетона, увеличением водоцементного отношения, при применении слабых заполнителей.

О деформативных свойствах бетона при приложении нагрузки судят по его модулю деформации, т. е. по отношению напряжения к относительной реформации, вызываемой его действием. Чем выше модуль деформации, тем менее деформативен материал. Поскольку диаграмма сжатия бетона криволинейна, то его модуль деформации зависит от значений относительных напряжений, постепенно понижаясь с их увеличением (рис.6.5), причем тем больше, чем ниже марка бетона. Обычно определяют либо начальный модуль деформации бетона Ео, когда преобладают упругие деформации, либо модуль деформации при определенном значении, например при= 0,5.

На практике используют эмпирические зависимости модуля деформации от различных факторов. Для расчета железобетонных конструкций важна зависимость модуля деформации при можно определить по формуле:

,

где R– прочность бетона.

В действительности модуль деформации может заметно отличаться от средних значений. В табл. 6.2 приведены значения модуля деформации при сжатии некоторых видов бетона, показывающие большое влияние на него технологических факторов.

Важное значение для расчета конструкций и оценки их поведения под нагрузкой имеют величины предельных деформаций, при которых начинается разрушение бетона, По опытным данным, предельная сжимаемость бетона изменяется в пределах 0.0015…0,003, увеличиваясь при повышении прочности бетона. Предельную сжимаемость бетона можно также увеличивать, применяя более Деформативные компоненты и обеспечивая достаточно надежное сцепление между ними

Предельную сжимаемость бетона можно также увеличивать, применяя более Деформативные компоненты и обеспечивая достаточно надежное сцепление между ними.

Предельная растяжимость бетона составляет 0,0001…0,0015, т.е. примерно в 15…20 раз меньше его предельной сжимаемости.

Предельная растяжимость повышается при введении в бетон пластифицирующих добавок, использовании белитовых цементов, уменьшении крупности заполнителей или при применении заполнителей с высокими деформативными свойствами и сцеплением с цементным камнем.

studfiles.net

Обработка зимнего бетона

Если после набора полной прочности зимний бетон и монолиты из неподготовленного бетона нормальной влажности обрабатываются вполне традиционно, то перфорация и устройство проемов в монолите до набора им прочности имеет свою специфику.

Проще говоря, не набравший марочную прочность и замерзший бетон не стоит дробить отбойным молотком и перфоратором. В этом случае возможно появление трещин.

До набора полной прочности бетон легко трескается.

Оптимальный способ устройства проемов — формирование опалубки для них еще на стадии заливки монолита. Среди прочего, в этом случае возможна полноценная анкеровка краев арматуры по краям проема. Там, где это невозможно и проем придется вырезать по месту, применяется рифленая арматура: рифление на ее поверхности само по себе служит анкером для прутка.

На фото — простейший способ устройства продухов.

Для собственно обработки там, где без нее не обойтись, предпочтителен алмазный инструмент. Алмазное бурение отверстий в бетоне не требует использования ударного режима; как следствие — меньше вероятность трещин и сколов. Резка железобетона алмазными кругами оставляет края реза идеально ровными и, что очень удобно, не требует смены режущего круга при резке армирования.

Определение и формула коэффициента Пуассона

Обратимся к рассмотрению деформации твердого тела. В рассматриваемом процессе происходит изменение размеров, объема и часто формы тела. Так, относительное продольное растяжение (сжатие) объекта происходит при его относительном поперечном сужении (расширении). При этом продольная деформация определена формулой:

где — длина образца до деформации, — изменение длины при нагрузке.

Однако, при растяжении (сжатии) происходит не только изменение длины образца, но и при этом меняются поперечные размеры тела. Деформация в поперечном направлении характеризуется величиной относительного поперечного сужения (расширения):

где — диаметр цилиндрической части образца до деформации (поперечный размер образца).

ОПРЕДЕЛЕНИЕ

Коэффициентом Пуассона называют абсолютную величину, равную частному относительного поперечного сужения (расширения) () к относительному продольному удлинению (сжатию) (). Обозначают коэффициент Пуассона обычно буквами: , . Встречаются и другие обозначения. Математически определение коэффициента Пуассона выглядит как:

Эмпирически получено, что при упругих деформациях выполняется равенство:

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий