Лампа дневного света

Характеристики люминесцентных светильников

В качестве заключения поговорим про характеристики люминесцентных светильников. Это важная часть статьи, прочитав которую вы сможете без проблем подобрать лампу точно под свои потребности.

При выборе компактной люминесцентной лампы обращаем внимания на следующий список характеристик:

Выходная мощность. Компактная лампа в силу своей специфики потребляет в пять раз меньше энергии на каждый люмен светового потока, чем обыкновенная лампа. Поэтому рассчитать требуемую мощность не составит никаких проблем. Нужно воспользоваться следующей формулой: мощность обычной лампы / 5 + 20%. Зачем прибавлять дополнительные проценты?

Цветовая температура. Глаз человека способен различить несколько оттенков света. В зависимости от цветовой температуры потока, оттенок может меняться от теплого желтого до холодного сине-белого. Показатель измеряется в кельвинах и обозначается большой буквой К.

  • Подвесные светильники — примеры установки, размещения и дизайна источников света своими руками (110 фото)
  • Светильник настольный: дизайн, особенности размещения и идеи по установке

  • Люстра своими руками — инструкции по изготовлению и мастер-класс по созданию дизайнерских моделей

Для каждого типа помещения необходимо подобрать максимально эффективную, с точки зрения работы, температуру света. Например, лампы с холодной цветовой температурой прекрасно подойдут для кухни или ювелирной мастерской, а вот теплый свет, создавая ощущения уюта и комфорта, лучше подойдет для спален или гостиных.

Скорость запуска. Практически ни одна люминесцентная лампа не выдает всю мощность мгновенно. Лампы с «плавным» стартом имеет больший ресурс службы, чем их аналоги с мгновенным запуском. Поэтому такие светильники распространены в помещениях, где нет необходимости быстро что-то подсветить и освещение редко выключается. К таким помещениям относятся, например, склады.

Срок службы. При правильном использовании ресурс люминесцентных светильников превышает ресурс лампы накаливания в 10 раз. Такие светильники работают по 8-10 тыс. часов, что равняется приблизительно 8-11 лет. Естественно, далеко не всегда удается достичь похожих результатов.

Чем чаще происходит включение или отключение света, тем меньше прослужит лампа. Каждое включение/выключение сокращает срок службы светильника на несколько часов. В отличие от ламп накаливания, перепады напряжения люминесцентным светильникам не страшны.

Достоинства и недостатки

Характеристики изделий зависят от температуры среды. Это обусловливается силой давления ртутных паров, располагающихся внутри изделия. Если температура стенок колбы равняется сорока градусам, светильник работает на максимуме.

Главные достоинства оборудования состоят в следующем:

  • высокая степень светоотдачи, достигающая максимум 75 лм/Вт;
  • большой срок работы (до 10 тысяч часов);
  • небольшая яркость, позволяющая светить, не слепя при этом глаза.

Недостатки оборудования следующие:

  • Ограниченная мощность люминесцентных ламп (единичная) при больших габаритах.
  • Сложное подключение оборудования.
  • Отсутствие реальной возможности обеспечения питания товара током с постоянной величиной.
  • При отклонении температуры воздуха от стандартных показателей (18-25 градусов) мощность подаваемого света значительно меньше. Если в помещении холодно (меньше десяти градусов), она может не заработать.

Анализируя достоинства и недостатки, следует вывод, что оборудование подходит для использования в местах, где оно оправдывает необходимость его эксплуатации и позволяет достичь эффекта, который не получится от изделия другого типа.

Проверка элементов лампы

Если после включения светильника лампочка работает неправильно, необходимо выяснить причину такого поведения. Перед тем как приступить к ремонту требуется убедиться, что причина неисправности именно в светильнике.

Проверяем присутствие напряжение и работоспособность выключателя. Это легко сделать, имея пробник наличия напряжения в электрической сети. Когда точно станет известно, что проблема в источнике света, в первую очередь потребуется выяснить какие элементы нуждаются в ремонте. Это может быть как сама колба, так и пусковое устройство.

Вот перечень основных неисправностей и причин вызвавших их.

  1. Нет никакой реакции на включение. Требуется проверить лампу и дроссель, а также место крепления лампы в патроне.
  2. Лампа не загорается в середине. Неисправен стартер или высоковольтный конденсатор.
  3. Лампа не включается, слышен посторонний звук. Неисправность в дросселе.
  4. Нарушение в оттенке свечения источника. Изменения в люминесцентном слое колбы.
  5. При включении происходит мигание, эффект стробоскопа, запуска нет. Причиной может быть стартер или плохой контакт в патроне.
  6. Устройство светит тускло и в оранжевом спектре. Нарушение герметичности колбы, лампу необходимо как можно быстрей утилизировать.
  7. Края колбы чёрного цвета. Необходимо поменять лампу.

Проще всего можно осуществить проверку путём замены лампы и стартера на заведомо исправные. Проведение такой работы не должно составить труда. В случае если замены нет, придётся проверять исправность с помощью тестера. Если после замены лампа всё так же не работает, то поломка в дросселе.

Проверка дросселя

Первым сигналом, что неисправность в дросселе, будет периодическое моргание света лампы, или визуально можно будет наблюдать за распространением разряда в середине колбы. Для проверки нам понадобится любой мультиметр с функцией прозвонки или измерения сопротивления.

Переключив тестер в режим прозвонки, необходимо дотронутся щупами до выходов обмоток дросселя. Если на экране горит цифра один, или когда стрелочный прибор показывает бесконечность, то обмотка находится в обрыве. Сопротивление исправного дросселя составляет около 40 Ом. В случае отображения нулевого сопротивления или порядка нескольких Ом, делаем вывод, что произошло межвитковое замыкание.

Аналогично можно проверить на короткое замыкание стартер, конденсатор и другие электронные части схемы.

Необходимо отметить, что в случае замены дросселя своими руками необходимо обратить внимание на соответствие мощностей лампы и дросселя

Проверка стартера

При этом используется ручное замыкание контактов через кнопку, т. е. имитация работы пускателя. Сначала замыкается кнопка S1, а далее включаем и через секунду отключаем линию кнопкой S2, т. е. имитируем работу стартера

В этом случае необходимо соблюдать осторожность, так как напряжение на кнопке будет превышать входное сетевое равное 220 в

Проверка люминесцентной лампы

Саму лампу (колбу), можно проверить используя схему подключения без стартера или установкой её в исправный светильник.

В таком виде, схема позволяет использовать обычную лампочку накаливания в качестве ограничителя по току. Проверяемая лампа подключается последовательно с выпрямителем. Так как питание осуществляется с использованием постоянного тока, то это вызывает быстрый износ электродов. Хотя, в таком подключении яркость излучения будет заметно ниже, чем при нормальном включении, всё равно, возможно оценить состояние лампы. Мощность лампочки выбирается от 40 Вт, диоды и конденсаторы берутся с запасом по напряжению.

Используя тестер, можно убедиться в целостности контактной пары в самой колбе. Для этого необходимо замерить сопротивление между её выводами. В рабочем состоянии оно должно составлять порядка нескольких Ом.

Назначение и устройство ЭПРА

В настоящее время устаревшую аппаратуру сменили ЭПРА для люминесцентных ламп, представляющие собой электронные пускорегулирующие устройства. Они обеспечивают мгновенное включение лампы, могут работать практически с любым питающим напряжением, у них отсутствуют недостатки, характерные для старой ПРА. Люминесцентные лампы относятся к типу газоразрядных источников света. Стандартная конструкция включает в себя стеклянную трубку, наполненную инертным газом и ртутными парами, а также электроды в виде спиралей, расположенные по краям. Здесь же расположены контактные выводы, по которым поступает электрический ток.

Принцип действия таких ламп заключается в люминесценции газов, когда по ним проходит электроток. Обычного тока между электродами недостаточно, для того чтобы образовался тлеющий разряд. Поэтому спирали вначале разогреваются током, пропущенным через них, а затем происходит подача импульса с напряжением 600 В и выше. В результате, с разогретых спиралей начинается эмитация электронов, которые совместно с высоким напряжением образуют тлеющий разряд. В дальнейшем ток и напряжение должны поддерживаться на определенном уровне, обеспечивающем нормальное функционирование лампы. По такому же принципу работают компактные или энергосберегающие люминесцентные лампы. Они отличаются от стандартных изделий только размерами и формами.

Питание всех типов ламп осуществляется через пускорегулирующий аппарат, называемый также балластом. В старых изделиях применялся электромагнитный балласт или ЭмПРА. В его конструкцию входили дроссель и стартер. Данные устройства обладали низким КПД, световой поток получался пульсирующий, сопровождаемый сильным гудением. Во время работы в сети возникали серьезные помехи. В связи с этим, производители постепенно отказались от ЭмПРА и перешли на более современные и удобные электронные устройства (ЭПРА). Конструкция электронной пускорегулирующей аппаратуры выполнена в виде платы с расположенным на ней высокочастотным преобразователем. В данных устройствах отсутствуют недостатки, характерные для ЭмПРА, поэтому работа лампы стала более устойчивой. Она обеспечивает выдачу увеличенного светового потока и служит значительно дольше.

Стандартная схема электронного балласта включает в себя следующие детали:

  • Диодный мост;
  • Генератор высокой частоты на основе полумостового преобразователя. В более дорогих изделиях используется ШИМ-контроллер;
  • Динистор DB3, применяемый в качестве пускового порогового элемента и рассчитанный на напряжение 30 вольт;
  • Силовая LC-цепь для розжига тлеющего разряда.

Характеристики источников света

Характеристика люминесцентных ламп Люминесцентные лампы имеют не только технические характеристики. Как любое электротехническое изделие, они обладают электрическими характеристиками, а как осветительный прибор – световыми параметрами.

К электрическим характеристикам относятся:

  • Номинальное напряжение. Напряжение сети, которое подходит для работы лампы. Составляет 220 В или 110 В.
  • Рабочее напряжение. Величина на лампе при ее горении. Равняется половине номинального и составляет 100-110 В для сети 220 В и 45-60 В для электросетей 110 В.
  • Напряжение зажигания. Величина на лампочке, необходимая для появления разряда. Она значительно выше сетевого значения и не является постоянной величиной. Зависит от схемы зажигания, условий окружающей среды.
  • Номинальная мощность. По этому показателю выделяют слабомощные (до 18 Вт), средней мощности (до 58 Вт) и мощные (от 58 Вт) устройства. Также в продаже можно найти высокоинтенсивные лампочки с мощностью 150 Вт, но они практически не используются из-за малой эффективности.
  • КПД. Люминесцентное освещение дает коэффициент полезного действия превышает 20%.
  • Диаметр колбы – 12,16,26,38 мм.
  • Размеры цоколя 14 и 27 мм.

Сравнительная таблица различных типов ламп Светотехнические характеристики газоразрядных ламп:

  • Номинальный световой поток. Задается через 100 часов после горения.
  • Индекс цветопередачи. Зависит от исполнения лампы. В стандартных приборах равняется 50-70%, в лампах с повышенной цветопередачей составляет 97%.
  • Цветовая температура. Показывает, какой оттенок будет у свечения. Люминесцентные лампы выполняются в диапазоне от 2700 К до 6500 К.

Эксплуатационные характеристики:

  • Световая отдача зависит от цветности и мощности. Наибольшей обладают бытовые лампы ЛБ 40 Вт – 80 лм/Вт. Из выпускаемых ламп максимальная светоотдача у серии Т5 с электронным ПРА – 104 лм/Вт.
  • Средняя продолжительность горения. Зависит от электродов и прочности покрывающей их оксидной пленки. У ламп средней мощности продолжительность составляет 15000 часов.
  • Коэффициент пульсаций. В большинстве люминесцентных ламп он равняется 23%, кроме устройств с улучшенной цветопередачей, в которых достигается значение 70%.
  • Зависимость от температуры окружающей среды. При низких температурах ухудшаются условия зажигания. Диапазон рабочих температур составляет от 5 до 55° С.
  • Утилизация. Так как в лампе содержится ртуть и другие вредные компоненты, ее нужно утилизировать особым способом. Для этого прибор нужно отнести и сдать в специальный пункт приема.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Область применения

Люминесцентные источники света получили большой спрос в организациях общественного назначения: школах, больницах, госучреждениях.

С дальнейшим развитием светильники оснастили электронным балластом, стало возможным их применение в распространенных патронах стандарта Е14 и Е27.

ЛЛ актуальнее применять в помещениях промышленного сектора для обеспечения большего периметра освещения при минимальных энергозатратах. Также их используют в освещении рекламных щитов и фасадов.

Люминесцентные приборы сочетают в себе характерные черты эффективного и экономного использования электроэнергии. В быту лампы дневного света потолочные и настольные применяются для растений, освещения рабочей поверхности и жилых комнат.

Люминофоры и спектр излучаемого света

Существует мнение, что излучаемый рассматриваемыми лампами свет неприятен для глаз, а предметы имеют искаженный цвет. Это происходит по нескольким причинам:

  • Синие и зеленые линии в спектре.
  • Неправильно подобранного типа ламп, в нем использован не тот, что требуется в конкретных условиях люминофор.

В ЛЛ, которые относятся к недорогим, используется галофосфатный люминофор, его спектр излучения преимущественно желтый и синий, красного и зеленого значительно меньше. Для глаза свет воспринимается как белый, но при отражении от предметов их цвет выглядит искаженным. Но у таких источников света существенное преимущество – они обеспечивают наивысшую светоотдачу.

В более дорогих лампах наноситься трехполосный и пятиполосный люминофор. Он обеспечивает более равномерное распределение излучения в части видимого спектра. Как результат, предметы, от которых он отбивается, выглядят более естественными.

Совет! Чтобы в домашних условиях оценить спектр лампы можно использовать обычные компакт-диски. На источник света следует посмотреть в отражении диска. В дифракционной линии удастся рассмотреть спектральные линии люминофора.

Подключение к сети

ЭПРА для люминесцентных ламп Газоразрядные лампы не могут напрямую подключаться в электросеть это связано с высоким сопротивлением при холодном состоянии и отрицательном дифференциальным сопротивлением.

Исправить эти проблемы можно путем применения балластов. Самые распространенные – это ЭмПРА (электромагнитный балласт) и ЭПРА (электронный).

ЭмПРА представляет собой электромагнитный дроссель, который подключается последовательно с лампой. Последовательно со спиралями накала подключается стартер, который является неоновой лампой с биметаллическими электродами и конденсатором. Преимущества – простота конструкции, надежность, долговечность. Недостатки – долгий пуск, требуется большое количество электроэнергии, гул во время работы, мерцание, крупные размеры.

ЭПРА питает лампочку высокочастотным напряжением, благодаря чему исключается мигание. Использует два варианта пуска ламп:

  • Холодный. Светильник включается сразу же после подачи напряжения.
  • Горячий. Электроды прогревается и источник загорается через 0,5—1 секунду.

К преимуществам относят долгий срок службы, меньшее энергопотребление, возможность диммирования на некоторых моделях, бесшумность.

Классификация люминесцентных ламп

Для классификации и выделения технических характеристик ЛЛ необходимо определить их работоспособность, а так же понять, какова их конструкция. Для этого целесообразно:

Определить свет, который излучается лампой. Он может быть обычным белым или дневным. Усовершенствованные модели возможны в универсальном исполнении.
Узнать поперечную ширину трубки. Чем больше этот показатель, тем мощнее будет ЛДС, а также будут выше данные по температуре цвета, спектру и сроку службы. Наиболее распространены и эффективны колбы на 18, 26 и 38 мм. Данные диаметра и длины трубки обычно маркируют рядом, к примеру, 26/406.
Посмотреть на такие показатели, как мощность ламп. На основе этих показателей возможно определение площади, освещаемой прибором. Также от этого параметра зависит и КПД.
Узнать, сколько контактов имеет ЛЛ. Их может быть четыре, может два при скрученной в кольцо лампе.
Определить, требуется ли для розжига люминесцентной лампы стартер и дроссель, или ЛЛ является бесстартерной. Некоторые думают, что если стартер не требуется, прибор будет более экономичным. Но это заблуждение, никакой связи между наличием либо отсутствием прерывателя и энергосберегаемостью нет.
Учесть номинал необходимого питания. Есть лампы, работающие не от 220 В, а от 127 В.
Посмотреть на форму лампы

Она может быть в форме кольца, U-образной, прямой, спиралевидной, шарообразной или дуговой.
Обратить внимание на долговечность работы. Она зависит от того, где должна быть применена данная лампа

Наиболее долговечны ЛЛ, предназначенные для дома.
Визуально понять цвет лампы. Является она ЛДЦ или ЛБ.

Принцип работы люминесцентной лампы

А нужно ли менять люминесцентные лампочки на LED-лампы?

На сегодняшний день можно уверенно сказать, что LED-лампочки любого форм-фактора практически по всем показателям превосходят люминесцентные аналоги. Причём светодиодные технологии продолжают прогрессировать, а значит, изделия на их основе будут ещё более совершенными в будущем. В подтверждение сказанного ниже приведена сравнительная характеристика двух видов трубчатых ламп.

Люминесцентные лампы Т8:

  • наработка на отказ составляет порядка 2000 ч. и зависит от количества включений, но не более 2000 циклов;
  • свет распространяется во все стороны, в связи с чем они нуждаются в отражателе;
  • постепенное увеличение яркости в момент включения;
  • пускорегулирующий аппарат (ПРА) служит источником сетевых помех;
  • деградация защитного слоя со снижением светового потока на 30%;
  • стеклянная колба и пары ртути внутри неё требуют бережного отношения и утилизации.

Светодиодные лампы Т8:

срок службы не менее 10 тыс. ч. и не зависит от частоты вкл./выкл.;
имеют направленный световой поток;
мгновенно включаются на полную яркость;
драйвер не оказывает влияния на электросеть;
потеря яркости не превышает 10% за 10 тыс. часов;
имеют значительно меньшую мощность электропотребления;
полностью экологически безопасны.

Кроме того, светодиодные лампы Т8 обладают вдвое большей светоотдачей при равном энергопотреблении, реже выходят из строя и имеют гарантию от производителя. Возможность размещения внутри колбы разного количества светодиодов позволяет добиться оптимального уровня освещённости. Это означает, что взамен люминесцентной лампы Т8-G13-600 мм на 18 Вт можно установить светодиодную лампу такой же длины на 9, 18 или 24 Вт.

Взвесив все «За» и «Против», можно сделать вывод, что переделка люминесцентного светильника под светодиодную лампочку полностью оправдана, как с технической, так и с экономической точки зрения.

Люминесцентная лампа: принцип действия, достоинства и недостатки

— Принцип действия люминесцентных ламп

— Достоинства и недостатки люминесцентных ламп

Принцип действия Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500. 2000 В на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.В своем движении электроны встречаются с нейтральными атомами газа — заполнителя полости трубки — и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии. Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света: . трубки с гелием светятся светло-желтым или бледно-розовым светом; • трубки с неоном — красным светом; трубки с аргоном — голубым светом. Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения. Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.

Достоинства люминесцентных ламп. Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются: . более высокий коэффициент полезного действия (15. 20%), высокая световая отдача и в несколько раз больший срок службы. Таким образом, при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания; . правильный выбор ламп по цветности может создать освещение, близкое к естественному; о благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи; . люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено. Лампы накаливания (очень чувствительные к повышениям напряжения) быстро перегорают; . малая себестоимость; . низкая яркость поверхности и ее низкая температура (до 50 °С) Недостатки люминесцентных ламп Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются: « сложность схемы включения; • ограниченная единичная мощность (до 150 Вт); • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться); » значительное снижение светового потока к концу срока службы; • вредные для зрения пульсации светового потока; » акустические помехи и повышенная шумность работы; в при снижении напряжения сети более чем на 10% от номинального значения лампа не зажигается; » дополнительные потери энергии в пускорегулирующеи аппаратуре, достигающие 25. 35% мощности ламп; • наличие радиопомех; • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.

Преимущества переделки

Это связано с тем, что для поджога паров ртути при небольшом напряжении в люминесцентной лампе необходимо создать на двух ее концах облака из электронов с помощью раскаленных нитей накала. Если всё сделано правильно, то он должен сразу загореться ярким и равномерным светом без миганий. Чтобы не попасть под опасное напряжение фазы , нужно выключить выключателем подачу напряжения и проверить с помощью индикатора, что на клеммной колодке, с помощью которой обычно подобные светильники подключаются к электросети, отсутствует фаза

Лампы светодиодные вместо люминесцентных Зайдя практически в любое офисное помещение, школу, детский сад или контору любого предприятия, можно обратить внимание на то, что освещение практически везде состоит из так называемых ламп дневного света, т

Светодиодные трубки распространяют свет вокруг себя во всех направлениях, поэтому не так важно сохранять правильное положение. Различают выносной и встраиваемый драйвер

Хотя в расчете освещенности светодиодных ламп и используются те же параметры освещения и предметов, при тех же световых потоках в люменах что и люминесцентные, светодиодный светильник освещает место или помещение значительно лучше люминесцентного освещения. Маркировка патрона или цоколя лампы обозначает: G — штыревая система подключения лампы, 13 — расстояние между штырями, выраженное в миллиметрах. При таком решении не придется заниматься демонтажем патронов. Это обеспечивает прижим лампы между патронами и позволяет исключить влияние отклонения геометрических размеров арматуры светильника

Различают выносной и встраиваемый драйвер. Хотя в расчете освещенности светодиодных ламп и используются те же параметры освещения и предметов, при тех же световых потоках в люменах что и люминесцентные, светодиодный светильник освещает место или помещение значительно лучше люминесцентного освещения. Маркировка патрона или цоколя лампы обозначает: G — штыревая система подключения лампы, 13 — расстояние между штырями, выраженное в миллиметрах. При таком решении не придется заниматься демонтажем патронов. Это обеспечивает прижим лампы между патронами и позволяет исключить влияние отклонения геометрических размеров арматуры светильника

При таком решении не придется заниматься демонтажем патронов. Это обеспечивает прижим лампы между патронами и позволяет исключить влияние отклонения геометрических размеров арматуры светильника

В результате затрачивается меньше средств и усилий на монтаж ламп. Достаточно только поменять саму люстру или просто подобрать светодиод, идентичный по габаритам и способам подключения обычному люминесцентному источнику света. К ней можно подсоединить оба идущих от патрона провода, что, во-первых, повышает надежность подключения, а во-вторых, избавляет от необходимости изолировать провода. Он может иметь жесткую фиксацию с корпусной частью либо быть подвижным поворотным. Как заменить люминесцентную лампу в светильнике на светодиодную без переделки

При таком решении не придется заниматься демонтажем патронов. Это обеспечивает прижим лампы между патронами и позволяет исключить влияние отклонения геометрических размеров арматуры светильника. В результате затрачивается меньше средств и усилий на монтаж ламп. Достаточно только поменять саму люстру или просто подобрать светодиод, идентичный по габаритам и способам подключения обычному люминесцентному источнику света. К ней можно подсоединить оба идущих от патрона провода, что, во-первых, повышает надежность подключения, а во-вторых, избавляет от необходимости изолировать провода. Он может иметь жесткую фиксацию с корпусной частью либо быть подвижным поворотным. Как заменить люминесцентную лампу в светильнике на светодиодную без переделки

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий