Практическое применение значения теплопроводности строительных материалов
Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление – нормируемая величина.
Материалы из минеральных волокон, Изоляционные материалы на природном основании, Огнестойкая теплоизоляционная керамика, Изоляционные материалы на клеточном гипсовом ангидритовом основании, Строительная керамика, Теплоизоляционные растворы и штукатурные смеси и т.д. Наиболее важным является использование плоского измерительного оборудования в специальных применениях, где можно в полной мере применять его особые благоприятные свойства.
Определение теплопроводности в зависимости от влажности
Влага в пористой структуре строительных материалов оказывает основное влияние на величину коэффициента теплопроводности. Проблема большинства лабораторных методов определения коэффициента теплопроводности — очень длительный период измерения, при котором испытуемый образец подвергается воздействию теплового потока. Даже в том случае, если испытуемый образец упакован в паронепроницаемую пленку в течение периода измерения, происходит новое распределение влаги в структуре материала, и конечное измеренное значение не делает достаточно объективно реальные свойства материала при данной влажности содержание.
Упрощенная формула, определяющая толщину слоя, будет иметь вид:
где, H – толщина слоя, м;
R – сопротивление теплопередаче, (м2*°С)/Вт;
λ – коэффициент теплопроводности, Вт/(м*°С).
Данная формула применительно к стене или перекрытию имеет следующие допущения:
Определение коэффициента теплопроводности увлажняющих связующих смесей
Другим типичным применением плоского измерительного оборудования является определение коэффициента теплопроводности увлажняющих связующих смесей. Во время гидратации происходят значительные изменения значения теплопроводности гидратирующего материала. Эти изменения частично вызваны превращением несвязанной водяной воды в структуру вновь образованных продуктов гидратации, а также развитием и изменением внутренней микроструктуры материалов.
Гидратация испытуемого образца происходит в изолирующем термокамере, чтобы изолировать данную систему, по крайней мере, частично от внешней среды, во-первых, от резких изменений внешней температуры. Испытуемый образец упаковывали в тонкую полиэтиленовую фольгу, чтобы предотвратить испарение воды в партии во время измерения и отделить испытательный зонд от агрессивного материала связующего. Во время измерения необходимо было выполнить два следующих условия.
- ограждающая конструкция имеет однородное монолитное строение;
- используемые стройматериалы имеют естественную влажность.
При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:
- СНиП23-01-99 – Строительная климатология;
- СНиП 23-02-2003 – Тепловая защита зданий;
- СП 23-101-2004 – Проектирование тепловой защиты зданий.
Изменение температуры от измерительного зонда не должно влиять на ход гидратации цементной смеси. Цементная смесь должна находиться в неподвижном температурном состоянии в течение всего времени измерения. Очевидно, что во время гидратации связующего происходит существенное изменение значения коэффициента теплопроводности. Более пристальное рассмотрение курса кривой коэффициента теплопроводности, очевидно, показывает, что на начальном этапе гидратация имитирует с определенной фазовой задержкой интенсивность курса гидратация тепловыделения.
Неорганические варианты
Наряду с органическими ТИМ, широко применяются и изоляторы неорганического типа. В основе своей они имеют различные минеральные составляющие – стекло, шлак, горные породы, асбест и другие. В результате переработки этих элементов получаются различные теплоизоляторы. Лидеров в сфере неорганических утеплителей, конечно же, является минеральная вата.
Минеральная вата
Этот материал выпускается в двух разновидностях. Шлаковая минвата изготавливается из различных отходов черной и цветной металлургии. Каменная вата в своей основе имеет различные горные породы – известняк, базальт и прочее. Для связывания элементов применяются фенолы или карбамиды. Выпускается минеральная вата в виде рулонов или блоков.
К положительным свойствам этого изолятора можно причислить:
- низкую плотность при отличных теплоизоляционных характеристиках;
- нулевую горючесть;
- высокий уровень шумопоглощения;
- длительный строк эксплуатации.
К недостаткам этого материала нужно отнести высокую паропроницаемость. Поэтому укладывать ее нужно непременно в связке с качественным слоем пароизолятора.
Стекловата
Сырьем для стекловаты служит стекло и отходы стекольного производства. Благодаря своим толстым и длинным волокнам, стекловата более прочная и упругая, чем минеральная вата.
При нагревании стекловата не выделяет вредных веществ, обладает хорошими характеристиками шумопоглощения и теплопроводности, а также устойчива к воздействию агрессивных веществ. Выпускается в рулонах.
Керамическая вата
Окись алюминия, кремния или циркония подарили потребителю отличный теплоизоляционный материал, называемый керамоватой. Изготавливается она с помощью центрифуги. При высоких оборотах раздуваются исходные материалы, которым после остывания придают форму рулонов.
Керамическая вата не боится высоких температур, поэтому ее можно класть на крыши или же в помещения с большими температурными перепадами. Она не деформируется, не горит и не боится химически активных воздействий. Плотность этого ТИМ — около 350кг/м3 , теплопроводность – до 0,16 Вт/м на Кельвин.
Область применения минеральной ваты
Вата для утепления обладает незначительным коэффициентом проводимости тепла, поэтому она используется в разных строительных и промышленных областях
Важно подчеркнуть, что именно она является практически незаменимым теплоизолятором, если речь идет о работе с горячими ограждающими элементами, потому что имеет низкий уровень возгораемости
Кроме того, сейчас она активно используется в утеплении фасадов зданий, а также для создания внутренней изоляции в бетонных и железобетонных постройках. Минеральная вата применяется для обустройства систем водоотвода и отопления. В последние несколько лет из-за своей доступности для возведения небольших бань также начал использоваться данный материал. Сравнительная характеристика утеплителей
Теплопроводность минваты: важные критерии
Теплопроводность – это способность какого-то объекта или предмета пропускать тепловую энергию. Абсолютно все материалы, применяемые сегодня в строительстве (и минераловатный утеплитель не исключение), обладают определенной теплопроводностью, которую можно количественно оценить в виде коэффициента теплопроводности.
Специалисты в строительной отрасли оперируют термином «теплоизоляционный материал». Такое понятие характеризует изолятор, который наделен низкой теплоотдачей. Сюда можно отнести облицовочную плитку, стекловату, кирпич и тому подобные. Причем на уровень теплопроводности во многом оказывает влияние структурность материалов, а также их плотность и прочие характеристики.
Теплопроводность ваты может варьироваться в пределах 0,038-0,055 Вт/м*К. Если проводить сравнение с аналогами, данный материал считается наиболее оптимальным для строительных работ. Сегодня производство сэндвич-панелей происходит по определенной схеме:
Схема производства
» alt=»»> Легко понять, что теплопроводность достаточно просто рассчитать по объему и толщине материала. К примеру, стекловата имеет коэффициент теплоотдачи 0,044 Вт/м*К, поэтому толщина ее слоя должна быть не меньше 189 мм.
От чего зависит показатель теплопроводности
Показатель теплопроводности зависит от нескольких факторов:
- Температура.
- Условия эксплуатации того или иного материала.
- Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
- Агрегатное состояние вещества. Самой высокой теплопроводностью обладают твердые тела, самой низкой — газы (в частности, вакуум).
- Структура, пористость (поры говорят о неоднородности структуры: когда через них проходит тепло, охлаждение будет минимальным); плотность вещества (большая плотность способствует более активному взаимодействию частиц, теплообмен и уравновешивание температур протекает быстрее).
Пенополистирольные утеплители в домах дачного и коттеджного типа
Многие застройщики используют материал для наружного утепления фасадов и потолочных конструкций дачных домов, которые переоборудуются под круглогодичное проживание. Основной круг применения пенополистирольной теплоизоляции – это отделка фундаментов, отмосток, утепление цементных стяжек под напольную плитку.
В отличие от минеральной ваты, пенополистирол не нуждается в обустройстве пленочной или мастичной гидроизоляции, поэтому может монтироваться непосредственно на ровную поверхность грунта.
- Оптимальная толщина пенополистирольного утеплителя, уложенного между лагами пола, не требует изменения его высоты. Заделка монтажных зазоров и сопряжений влагостойким шпаклевочным составом позволяет эксплуатировать свойства утеплителя с максимально высокой эффективностью.
- Фундаментная теплоизоляция существенно уменьшает температурные перепады, а отсутствие в подвале сырости положительно сказывается на комфорте микроклимата в доме, снижении расходов на оплату отопления в зимний период.
- Пенополистирольные разъемные кожухи блокируют утечку тепла из труб отопления и горячего водоснабжения, исключают промерзание водопроводных и канализационных коммуникаций, расположенных на небольшой глубине.
Более чем умеренная стоимость пенополистирольных материалов дополняется возможностью монтажа своими руками, что позволяет уменьшить стоимость теплоизоляционных работ на 35-40%.
Минеральная вата: характеристики и свойства
Теплопроводность и особенности минеральной ваты
Теплопроводность — свойство предмета пропускать через себя тепло и отдавать его. У любого утеплителя есть своя теплопроводность, которая определяет качество материала, область ее использования.
Теплопроводность минеральной ваты зависит от марки и состава. В среднем показатели равны 0,034-0,05 Вт/м*К. Данные очень низкие, поэтому минеральная вата является прекрасным теплоизоляционным материалом.
Более рыхлая структура минваты имеет более низкий уровень теплопроводности, поэтому тепло лучше задерживается в воздушных «подушках».
У тяжелой минваты теплопроводность равна 0,48-0,55 Вт/м*К, а у легкой (с рыхлой структурой) теплопроводность составляет 0,035-0,047 Вт/м*К. Сравнить коэффициент теплопроводности минеральной ваты с различными видами утеплителей поможет таблица 1.
Название материала | Коэффициент теплопроводности, Вт/м*К |
Пенополиуретан | 0,025 |
Вспененный каучук | 0,03 |
Легкие пробковые листы | 0,035 |
Стекловолокно | 0,036 |
Пенопласт | 0,037 |
Пенополистирол | 0,04 |
Поролон | 0,04 |
Легкая минеральная вата | 0,039-0,047 |
Стекловата | 0,05 |
Хлопковая вата | 0,055 |
Чем ниже значение теплопроводности, тем лучше утеплитель. В сравнении с пенополистиролом и пенопластом, минеральная вата дает менее эффективные энергоемкие показатели. Но, если сравнить огнестойкость и вредность этих утеплителей, то минвата явно выигрывает.
Минеральная вата не горит и не содержит потенциально вредных веществ.
Одинаково сохраняют тепло:
- пенополистирол экструдированный (40 кг/м3) при толщине слоя 95 мм;
- минеральная вата (125 мг/м3) — 100 мм;
- ДСП (400 кг/м3) — 185 мм;
- дерево (500 кг/м3) — 205 мм.
Минеральная вата имеет низкий коэффициент теплопроводности, поэтому используется везде. Ее используют для утепления фасадов зданий, для внутреннего и наружного утепления.
Выбор минваты и расчет толщины утеплителя
Любое здание имеет свою норму теплосопротивления. Цифры зависят от климатической зоны и отличаются, исходя из региона.
У каждого утеплителя есть свой уровень теплопроводимости
Поэтому важно создать комфортные теплоизоляционные условия, которые сократят потребление энергии на отопление и охлаждение помещения
Если здание уже построено, расчеты нужно проводить, исходя из типа материала, его сечения, провести расчет теплопроводности, узнать цифры по теплоизоляции. Для домов, которые только строятся, больше возможностей для выбора стройматериалов, утеплителей и отделки.
Для расчетов толщины утеплителя нужно знать три цифры:
- региональные стандарты теплосопротивления зданий;
- коэффициент теплосопротивления стройматериала сооружения;
- коэффициент теплопроводности утеплителя.
Расчет проводите по формуле:
K = R/N,
где K – цифра теплосопротивления стены; R — толщина слоя утеплителя; N — коэффициент теплопроводности.
Эта формула поможет рассчитать теплосопротивление стены. И, на основе полученных данных, можно вычислить, какая нужна теплоизоляция по толщине. Полный расчет толщины утеплителя вы найдете в статье «Толщина утеплителя для стен».
Технические характеристики минеральной ваты как утеплителя
Каждый теплоизоляционный материал хорош по-своему. Минеральная вата в том числе.
Даже больше: она во многом лучше другим утеплителей, т.к. экологична, не вредит здоровью, проста в монтаже и долго сохраняет свои эксплуатационные свойства.
Для примера в таблице 2 сравним технические характеристики минеральной ваты и экструдированного пенополистирола.
Наименование характеристики | Минеральная вата | Экструдированный пенополистирол |
Прочность на сжатие при 10% линейной деформации, МПа | 37-190 (+/- 10%) | 28-53 (+/- 10%) |
Водопоглощение по объему за 24 часа | менее 0,4 | 0,2-0,4 |
Время самостоятельного горения, не более, c | не горючий материал | разгалаются ядовитые газы |
Пожарно-технические характеристики по СНиП 21-01-97 | НГ, Т2 | Г1, Д3, РП1 |
Диапазон рабочих температур, °С | -180 до +650°С При t ≥ 250°С связующее испаряется. Плавится при 1000°С | -50 до +75 °С При 200-250°С тепла разлагаются токсичные вещества |
Коэффициент паропроницаемости, мг/(м.ч. Па) | 0,31-0,032 | 0,007-0,012 |
Безопасность | + | – |
Тепловое сопротивление | 0,036-0,045 | 0,03-0,033 |
Звуконепроницаемость и ветрозащитное действие | + | + |
Влагостойкость | + | + |
Высокая стойкость к нагрузкам | – | + |
Сохранение стабильных размеров | – | + |
Долговечность | 50 лет (фактическая – 10-15 лет) | 50 лет (фактическая – более 20 лет) |
Удобство использования | + | + |
Трудновоспламеняемость | + | – |
Приложение А (обязательное)
Таблица А.1
Материалы (конструкции) | Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации | |
А | Б | |
1 Пенополистирол | 2 | 10 |
2 Пенополистирол экструзионный | 2 | 3 |
3 Пенополиуретан | 2 | 5 |
4 Плиты из резольно-фенолформальдегидного пенопласта | 5 | 20 |
5 Перлитопластбетон | 2 | 3 |
6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс» | 5 | 15 |
7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс» | ||
8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна) | 2 | 5 |
9 Пеностекло или газостекло | 1 | 2 |
10 Плиты древесно-волокнистые и древесно-стружечные | 10 | 12 |
11 Плиты фибролитовые и арболит на портландцементе | 10 | 15 |
12 Плиты камышитовые | 10 | 15 |
13 Плиты торфяные теплоизоляционные | 15 | 20 |
14 Пакля | 7 | 12 |
15 Плиты на основе гипса | 4 | 6 |
16 Листы гипсовые обшивочные (сухая штукатурка) | 4 | 6 |
17 Изделия из вспученного перлита на битумном связующем | 1 | 2 |
18 Гравий керамзитовый | 2 | 3 |
19 Гравий шунгизитовый | 2 | 4 |
20 Щебень из доменного шлака | 2 | 3 |
21 Щебень шлакопемзовый и аглопоритовый | 2 | 3 |
22 Щебень и песок из вспученного перлита | 5 | 10 |
23 Вермикулит вспученный | 1 | 3 |
24 Песок для строительных работ | 1 | 2 |
25 Цементно-шлаковый раствор | 2 | 4 |
26 Цементно-перлитовый раствор | 7 | 12 |
27 Гипсоперлитовый раствор | 10 | 15 |
28 Поризованный гипсоперлитовый раствор | 6 | 10 |
29 Туфобетон | 7 | 10 |
30 Пемзобетон | 4 | 6 |
31 Бетон на вулканическом шлаке | 7 | 10 |
32 Керамзитобетон на керамзитовом песке и керамзитопенобетон | 5 | 10 |
33 Керамзитобетон на кварцевом песке с поризацией | 4 | 8 |
34 Керамзитобетон на перлитовом песке | 9 | 13 |
35 Шунгизитобетон | 4 | 7 |
36 Перлитобетон | 10 | 15 |
37 Шлакопемзобетон (термозитобетон) | 5 | 8 |
38 Шлакопемзопено- и шлакопемзогазобетон | 8 | 11 |
39 Бетон на доменных гранулированных шлаках | 5 | 8 |
40 Аглопоритобетон и бетон на топливных (котельных) шлаках | 5 | 8 |
41 Бетон на зольном гравии | 5 | 8 |
42 Вермикулитобетон | 8 | 13 |
43 Полистиролбетон | 4 | 8 |
44 Газо- и пенобетон, газо- и пеносиликат | 8 | 12 |
45 Газо- и пенозолобетон | 15 | 22 |
46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе | 1 | 2 |
47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе | 1,5 | 3 |
48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе | 2 | 4 |
49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе | 2 | 4 |
50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе | 2 | 4 |
51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе | 1,5 | 3 |
52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе | 1 | 2 |
53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе | 2 | 4 |
54 Древесина | 15 | 20 |
55 Фанера клееная | 10 | 13 |
56 Картон облицовочный | 5 | 10 |
57 Картон строительный многослойный | 6 | 12 |
58 Железобетон | 2 | 3 |
59 Бетон на гравии или щебне из природного камня | 2 | 3 |
60 Раствор цементно-песчаный | 2 | 4 |
61 Раствор сложный (песок, известь, цемент) | 2 | 4 |
62 Раствор известково-песчаный | 2 | 4 |
63 Гранит, гнейс и базальт | ||
64 Мрамор | ||
65 Известняк | 2 | 3 |
66 Туф | 3 | 5 |
67 Листы асбестоцементные плоские | 2 | 3 |
Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость
Эффективность многослойных конструкций
Плотность и теплопроводность
В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:
- соответствовать расчётным нормам строительства и энергосбережения;
- оставлять размеры ограждающих конструкций в пределах разумного;
- уменьшить материальные затраты на строительство объекта и его обслуживание;
- добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).
Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.
Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух
Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.
Расчёт толщины стен и утеплителя
Расчёт толщины стены зависит от следующих показателей:
- плотности;
- расчётной теплопроводности;
- коэффициента сопротивления теплопередачи.
Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.
Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.
Таблица 2
Показатель | Бетоны, растворно-бетонные смеси | |||
Железобетон | Цементно-песчаный раствор | Сложный раствор (цементно-известково-песчаный) | Известково-песчаный раствор | |
плотность, кг/куб.м | 2500 | 1800 | 1700 | 1600 |
коэффициент теплопроводности, Вт/(м•°С) | 2,04 | 0,93 | 0,87 | 0,81 |
толщина стен, м | 6,53 | 2,98 | 2,78 | 2,59 |
Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).
Таблица 3.1
Показатель | Конструкционно-теплоизоляционные м-лы | |||||
Пемзобетон | Керамзитобетон | Полистиролбетон | Пено- и газобетон (пено- и газосиликат) | Кирпич глиняный | Силикатный кирпич | |
плотность, кг/куб.м | 800 | 800 | 600 | 400 | 1800 | 1800 |
коэффициент теплопроводности, Вт/(м•°С) | 0,68 | 0,326 | 0,2 | 0,11 | 0,81 | 0,87 |
толщина стен, м | 2,176 | 1,04 | 0,64 | 0,35 | 2,59 | 2,78 |
Таблица 3.2
Показатель | Конструкционно-теплоизоляционные м-лы | |||||
Кирпич шлаковый | Силикатный кирпич 11-типустотный | Кирпич силикатный 14-типустотный | Сосна (поперечное расположение волокон) | Сосна (продольное расположение волокон) | Фанера клеёная | |
плотность, кг/куб.м | 1500 | 1500 | 1400 | 500 | 500 | 600 |
коэффициент теплопроводности, Вт/(м•°С) | 0,7 | 0,81 | 0,76 | 0,18 | 0,35 | 0,18 |
толщина стен, м | 2,24 | 2,59 | 2,43 | 0,58 | 1,12 | 0,58 |
Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.
Таблица 4
Показатель | Теплоизоляционные м-лы | ||||||
ППТ | ПТ полистиролбетонные | Маты минераловатные | Плиты теплоизоляционные (ПТ) из минеральной ваты | ДВП (ДСП) | Пакля | Листы гипсовые (сухая штукатурка) | |
плотность, кг/куб.м | 35 | 300 | 1000 | 190 | 200 | 150 | 1050 |
коэффициент теплопро- водности, Вт/(м•°С) | 0,39 | 0,1 | 0,29 | 0,045 | 0,07 | 0,192 | 1,088 |
толщина стен, м | 0,12 | 0,32 | 0,928 | 0,14 | 0,224 | 0,224 | 1,152 |
Значения таблиц теплопроводности строительных материалов применяются при расчётах:
- теплоизоляции фасадов;
- общестроительной изоляции;
- изоляционных материалов при устройстве кровли;
- технической изоляции.
Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.
Перенос тепла на молекулярном уровне
Когда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего. Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться
Что такое теплопроводность
В теории теплопроводность – это способность материала проводить энергию или тепло от более нагретых частей к менее тёплым, путём хаотического движения частиц тела. На практике это минимизация тепловых потерь через строительные конструкции. У разных материалов своя теплопроводность. Дерево менее податливо к таким действиям, а металл наоборот нагревается до такой степени¸ что его тяжело держать в руках.
Для характеристики проводника тепла придумали такую единицу, как коэффициент. Обозначают её греческой буквой λ и измеряют в Вт/(м*℃). Иногда вместо градусов Цельсия в этой формуле указаны градусы Кельвина (К), но суть от этого не меняется. Этот коэффициент показывает способность передачи тепла материалом на определённое расстояние за единицу времени. Но показатель характеризует само вещество, не привязываясь к размерам изделия.
КТП некоторых материалов Источник pobetony.expert
При покупке стройматериала у продавца можно попросить паспорт на продукт и посмотреть коэффициент теплопроводности. Сырье, отличающееся высокой проводимостью тепла, используют в качестве радиаторов, так как их стенки будут передавать нагрев от теплоносителя.
Чем меньше коэффициент теплопроводности материала для стены здания, тем меньше оно будет терять тепла во время холодной погоды. И тем меньше можно делать толщину стены. В справочниках чаще всего указывают несколько значений теплопроводности для материала (от трёх и больше). Это происходит из-за того, что сам коэффициент меняется в зависимости от температуры и других факторов, например, влаги, при которой значение увеличивается.
Вспененная древесина Источник inpromen.ru